NGST SCIENTIST'S EXPERT ASSISTANT INTRODUCTION

- A TECHNOLOGY UNDERTAKING TO IMPROVE MISSION OPERABILITY
 - REDUCE OPERATIONS STAFFING AND MISSION LIFE-CYCLE COST
 - PROVIDE USERS SUPERIOR PROPOSAL DEFINITION TOOLS
- A JOINT EFFORT OF GSFC'S ADVANCED ARCHITECTURES AND AUTOMATION BRANCH AND THE ST Scl
- A PROTOTYPE SEA FOR HST's ADVANCED CAMERA FOR SURVEYS IS BEING DEVELOPED
 - IDEAL FOR PROOF-OF-CONCEPT
 - REAL-LIFE APPLICATION
 - ENABLES 'ACID-TESTING' BY THE USER COMMUNITY
- SEA IS A POTENTIAL ENVIRONMENT FOR NGST DESIGN TRADES
- WE INVITE AND WELCOME COMMENTS AND SUGGESTIONS
 - kkalinowski@hst.nasa.gov
 - 301-286-3369

SEA: The Scientist's Expert Assistant

Ad-hoc Science Working Group

April 15, 1998

Tom Brooks, Lisa Dallas, Sandy Grosvenor, Jeremy Jones, Anuradha Koratkar, LaMont Ruley

Agenda

- What is the SEA?
- What is the current process?
- How can we improve it?
- How will we accomplish this?
- Demonstration
- Challenges
- Development priorities

What is the current process?

- NGST will be operated in service mode like HST
- Programs must be accurate, unambiguous, feasible while remaining flexible for scheduling
- Smart observing proposal development tools and upto-date documentation are indispensable
- In evaluating HST's current process and tools, we've learned that:
 - Most Phase II proposals need modification after submission
 - Well over half of the modifications are not related to "science issues" but are technical or syntactical issues
 - Much manual and redundant data entry required
 - Responding to repetitive questions drains ST ScI staff time
 - Many problems are due to HST's complexity, but not all

How can we improve it?

- Provide easy access to technical and reference materials
- Put user focus on science rather than technical parameters
- Provide better tools to visualize and structure the observing program
- Eliminate continual manual re-entry of information

How will we accomplish this?

- Utilize rule-base technology
 - Science-based questions to recommend technical parameters.
 - Accommodate a range of user types: "rookie" to "expert"
- Utilize new dynamic, interactive, and visual user interfaces
 - Rapid prototyping techniques, visual tools
- Integrate the tools and modules
 - Eliminate continual manual re-entry of information
 - Context-sensitive links to reference materials and sources
 - Common interface styles for better efficiency, faster learning curve

How will we accomplish this?

- Prototyping HST's ACS
 - Good balance of complexity, operational style
 - Nature of science objectives partially overlap with NGST
 - Will allow evaluation of SEA's effectiveness by comparison with operational ST ScI tools for ACS
- Small three year effort to investigate new ways of supporting observing proposal development
- Currently team of five: 2 GSFC contractor, 2 GSFC civil servant, 1 ST Scl. Two are full-time on SEA

Today's Demonstration

- Initial SEA proposal browser framework
- Prototype Exposure Time Calculator (ETC)
 - supports imaging for ACS and STIS
 - uses ST Scl's "synphot" package for source and background counts
 - not yet integrated into SEA browser
- First generation Visual Target Tuner (VTT):
 - pans, zooms, selects inclusion/exclusion zones
- Preliminary expert system integration:
 - rule-based interview with minimal rule base for ACS detector and filter selection

Demonstration

Challenges

- Developing scientists' acceptance and trust of a rulebased system
- Balance between existing HST issues while looking ahead to NGST
- Adaptability to other observing platforms
 - Extensive use of object orientation to allow easy changes for different instruments, targets, and observatories
 - Potential integration and collaboration with other groups
- Keeping phase with rapidly evolving technology
 - Currently using Java 1.1 and Web-based distribution
- Developing a scientifically and technically useful help system
- Potential "spin-off" of operational products

Development Priorities: Target Tuner

- Add additional HST apertures for complete FOV
- Model diffraction spikes, CCD bleeding
- Integrate with various catalogs to automatically retrieve information and images
- Support import and export of user-supplied images
- Integrate/merge with ETC to simulate images
- Data mining on images

Development Priorities: Exposure Calculator

- Integrate into SEA Browser (as shown at left)
- Add support for additional spectral energy distributions and surface brightness distributions
- Adjust to provide comparison of detectors in different instruments
- Support spectroscopy

Development Priorities: Expert Systems

- Develop and test interfaces for best question/answer format
- Expand feedback from rule base to user
- Expand rule base
 - full range of ACS configurations
 - integrate target / exposure information
 - expand use of rule base into other modules
- Visit planning
 - multiple targets and exposures

Contacts and Additional Information

- Lead Goddard contact: Jeremy Jones:
 - Jeremy.E.Jones@gsfc.nasa.gov
 - **-** 301 / 286 **-** 3192
- Lead ST ScI contact: Anuradha Koratkar:
 - koratkar@stsci.edu
 - 410 / 338 4470
- SEA Development Web Page:
 - http://aaadev.gsfc.nasa.gov/NGSTProtos
 - working page, prototype links, team presentations and papers
 - used for internal team communications

Project Plan

- Phase I (FY 97): analysis & initial research
 - Research current process, establish/prioritize prototype plans
- → Phase II (FY 98): prototype "proof-of-concept" tools
 - Design and implement covering architecture and objects
 - Implement and evaluate different interfaces options
 - 1st and 2nd generation of tool features
- Phase III (FY 99): expand into a live test-bed
 - Develop full operational prototype to support HST's ACS.
 - Evaluate effectiveness with existing HST production tools
- Phase IV (FY 00): final wrap up and analysis
 - Metrics and evaluation to see if desired gains achieved
- Throughout: "spin-off" successful components to ST ScI or others for adaptation to production use

Development Strategy

- Initial RAD prototype: Exposure Time Calculator
 - Strawman for tool selections, initial system design
- Proposal Browser "shell"
 - Integrates individual modules / tools into a single system
 - "Expert" mode: form-based interface to select parameters
 - "Interview" mode: Rule-based questions guide observer
- Individual Modules run on their own or in browser
 - Share common object base.
 - Easily share information between modules
- Start simple, then expand
 - Early focus on initial architecture and integration of modules
 - Module features start simple, expand in scope and complexity
 - Initial focus is single exposure, later will expand into multiple exposures and multiple targets